Last Time: Two-Channel PR Filter Banks $-\frac{H_{o}(z)}{12} - \frac{12}{F_{o}(z)} - \frac{y \ln 3 - x \ln - l}{y \ln 3 - x \ln - l}$ X [n] $H_1(2)$ I_2 $f_1(2)$ $F_1(2)$ $Y(z) = Z^{-L} X(z)$ $\frac{1}{2}\chi(z)$ Fo(z) Ho(z) + F(z) H₁(z) Distortion $+\frac{1}{2}\chi(-2)\left[F_{0}(2)H_{0}(-2)+F_{1}(2)H_{1}(-2)\right]$ Alidsing PR Conditions (Verter 1:, 1986) • $F_{o}(z)$ Ho(z) + $F_{i}(z)$ H, (z) = 2 z - L • $F_{o}(z)$ $H_{o}(-z)$ $f_{i}(z)$ $H_{i}(-z) = 0$

Obs: The PR conditions are the equations with 4 unknowns (Ho, Ho, Fo, Fo). $H_{1}(\mathcal{Z}) \int \left[F_{0}(\mathcal{Z}) \right] \left[\frac{F_{0}(\mathcal{Z})}{F_{0}(\mathcal{Z})} \right] \left[\frac{2\mathcal{Z}-L}{\mathcal{Z}} \right]$ $H_{1}(\mathcal{Z}) \int \left[F_{0}(\mathcal{Z}) \right] \left[\frac{2\mathcal{Z}-L}{\mathcal{Z}} \right] \left[\frac{2\mathcal{Z}-L}{\mathcal{Z}} \right] \left[\frac{2\mathcal{Z}-L}{\mathcal{Z}} \right] \left[\frac{2\mathcal{Z}-L}{\mathcal{Z}} \right]$ H. (2) Ho (-Z) Given the analysis filters, he can time the synthesis filters by inverting this matrix, $\begin{bmatrix} F_{\sigma}(z) \\ z \\ F_{\iota}(z) \end{bmatrix} = \frac{2z^{-L}}{\Delta(z)} \begin{bmatrix} H_{\iota}(-z) & -H_{\iota}(z) \\ -H_{\sigma}(-z) & H_{\sigma}(-z) \end{bmatrix} \begin{bmatrix} I \\ I \\ I \\ I \end{bmatrix}$ Synthesis $= \frac{2z^{-L}}{\Delta(z)} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix} \qquad Analy sis$ $F_i[ters]$ Filters $\Delta(z) = H_{o}(z) H_{i}(-z) - H_{o}(-z) H_{i}(z)$

Q: Suppose that H. & H, are FIR.
Are Fo & F, FIR?
A: Not necessarily. The issue is D(2).
Might not even have causal as stable
$DTR F_0 Q F_{\ell}$
FIR PR Filter Bark Design
Q: How do ne force Fo & F, to be FIR?
A: Force $\Delta(z) = 2z^{-L} \implies FIR solt could put any gain and Jelay$
$2z^{-L} = H_0(z) H_1(-z) - H_0(-z) H_1(z)$
= $H_{\sigma}(z) F_{\sigma}(z) - H_{\sigma}(-z) F_{\sigma}(-z)$
Po(2) $Po(-2)$ "product"

Design Procedure: l. Find Po(z) that satisfies How do he do this? $P_{o}(z) - P_{o}(-z) = 2 z^{-L}$ 2. Factorize Po(Z) into Ho(Z) Fo(Z) 3. Define $H_1(z) = F_0(-z)$ F, (2) = - Ho(-2) > Differt filte barks/noullets/properties Po(Z) = Po, and (Z2) + Z-1 Po, odd (Z2) Po (-2) = Po, en (22) - Z-1 Po, odd (22) $P_{o}(z) - P_{o}(-z) = 2z^{-1}$ $P_{o,odd}(z^2) = 2z^{-L}$ oncy even = 2Z^{-(2K+1)} poners odd poul must be odd シレ

 $P_{0,odd}(\mathcal{Z}^{1}) = \mathcal{Z}^{-2K} \Longrightarrow P_{0,odd}(\mathcal{Z}) = \mathcal{Z}^{-K}$ delay Obs: Po, en (Z) is the design choice even Po, odd (Z) must be a delay odd coeff. Ex: Let Is poing valid? ies Po En3 1 112 112 0 1 2 Po, odd Cr3 = SCrJ Poperer Eng 112 102 0 | 0 K=0, L=1

Ex: Let		
porni	Is poind varial?	
$\begin{array}{c} 1/1 \\ 1/1 \\ -1/2 \\ -1/4 \end{array}$	6 Type I Liven-Phase 1/4	
Po, eren Enz	$P_{a,odg} \sum S = \delta \sum n - 13$	
$ \begin{array}{c} 112111\\ \hline 12\\ \hline -124\\ \hline -1/4 \end{array} $		
k=1,L=3	,	
Q: What kind of f	ilter is this?	
A: It is a (switted) half-band filter:		
$P_{\theta} [2n-L]$	= 5 Cn 3	

Des: A filter polo of the form Po [2n-1] = Stu3 is called a half-band Filter centered at L. 068: The length of the filter is 22+1. We have now reduced the problem 065: to designing half-band (interpolation) filtes, Half-Bard Filter Design If Pois a half-band filter centered at L, then $P_{o}(z) - P_{o}(-z) = 2z^{-L}$

Q: What do people typically do? A: Assume P(B) is Type I Cinear - Phase why not type II? Lis odd. $P_{o}(e^{j\omega}) = e^{jL\omega} P_{ampi}(\omega)$ X real function Center of Symmetry 9(-2) $P(e^{j(\omega-\pi)}) = e^{-jL(\omega-\pi)} P_{anpl}(\omega-\pi)$ $= e^{jL\pi - jL\omega} P_{ampl}(\omega - \pi)$ = - e^{ila} Panpi (w-tr)

 $e^{jL\omega}P_{ampl}(\omega) + e^{jL\omega}P_{ampl}(\omega-\pi) = 2e^{jL\omega}$ $P_{ampl}(\omega) + P_{ampl}(\omega - \pi) = 2$ Ex: T-ws Q: How do ne Pawpl(~) $\pi - \omega_{\rm p}$ gharantee Hat Pompi (m-17) tiese add to 2? wpws TT $T - w_s = \omega_p$ 2 $\omega_{p} + \omega_{s} = \pi$ $\omega_{s} - \frac{\pi}{2} = \frac{\pi}{2} - \omega_{p}$ ripples need to cancel out -vhalf-bond

low-pass filter (L=0) Ex: Ideal Polein) = Holein) Folein) PR Ho (ei~) $F_{o}(e^{i\omega})$ 2 52 1 a: Why the gain factor of 2? A: To account for the magnitude being halved from down sampling. Remark: You will explore this in MATLAB in the homework.

Q: If Po is at length 2Lt1, how many coeffs do me have to design? A: We only need to design Po, even, which is itself symmetry. # coeff s Ltl 2 coers | | 3 2 5 3 7 4 Q: What is Po, een? A: Type II Linear-Phase Center of Symmetry 2 with $P_{o,eren}(e^{j\omega}) = e^{-j\frac{j}{2}\omega} P_{eren,anp}(\omega)$

Putting every tring together, $P_{o}(z) = P_{o,een}(z^{2}) \pm z^{-1} P_{o,odd}(z^{2})$ $P_{o}(e^{\delta \omega}) = P_{o,een}(e^{j^{2}\omega}) \pm e^{-jL\omega}$ By D and A, $e^{-jL\omega} - jL\omega - jL\omega - jL\omega - jL\omega - jL\omega - jL\omega$ $P_{anpl}(\omega) = P_{even, anpl}(2\omega) +)$ $P_{ampl}(\omega) - l = P_{even}, ampl(2\omega)$

Ex: Panpl, eva (201) Pamp1(c) $-\tau$ $\omega_{\rm p} \omega_{\rm s} \tau$ $\frac{1}{2} + \frac{3\pi}{2} 2\pi$ ศ เ pass-bail Stop-land freg heg Pauplea (u) Type II \mathcal{N} linear - phase TT LTT zero @ TT One band filty ripples will auto materically cancel by synneshy Remark: we've verheed the protein to designing a type II liven-phase filter.

Window-Based Design Method Goal: Approximate an ideal low-pass filter with an FIR Filter. Pideal En3 = 2 $\frac{Sin(\frac{\pi}{2}n)}{h}$ Pideal (cr) IIR W Enz 11-top half-band PoEn] = Piden, En3 WEn3 fiter Penark: There's a whole industry in designing window fun Ctions,